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Abstract 

A braided group in the sense of Majid [6] is a Hopf algebra B in a braided monoidal category 
which satisfies a generalized commutativity condition; this condition is expressed with respect 
to a certain class of B-comodules. The more obvious condition that B be a commutative algebra 
in the braided category does not make sense. 

We propose a different commutativity condition for bialgebras: We show that a coalgebra 
reconstructed from a category over a braided base category d has the additional structure of 
being an object of the center ~e(~'-Coalg) of the category of coalgebras. We prove that braided 
groups which are reconstructed from braided monoidal categories over ~¢ are commutative alge- 
bras in the center of •-Coalg. We give further information about Hopf algebras in :Y'(d-Coalg). 
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1. Introduction 

In noncommutative geometry of  quantum groups and quantum spaces one often 

encounters noncommutative algebras whose noncommutativi ty is controlled by  com- 

mutativity relations given in terms of  solutions o f  the quantum Yang Baxter equation. 

As a unifying machine for noncommutative geometry of  algebras with controlled non- 

commutativity Manin [7] has suggested the use of  a symmetric base category within 

which all constructions should take place. We denote z the symmetry of  this cate- 

gory %e. The multiplication A o f  a commutative algebra in c~ then satisfies A o z = A. 

Note that underlying this "commutat ive" algebra there can still be a noncommutative 

ordinary algebra. A fruitful example of  this setup is the category o f  Z2-graded vector 

spaces as a basis for supergeometry. I f  one wishes to extend the unifying machine o f  
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a base category with nonstandard commutativity o f  the tensor product to the case o f  
quantum spaces given in terms of  R-matrices, one has to drop the requirement that r 

be a symmetry and deal with a braided base category (N, r)  instead. Many notions o f  
the theory of  algebras and bialgebras still generalize nicely to braided categories - for 
example, the notions of  a commutative algebra and o f  a bialgebra (Note the definition 

of  a bialgebra involves a flip of  tensor factors!) However, new problems arise from 
the fact that ~2 ¢ id. 

The particular subtleties arising when one wants to deal with something like "com- 

mutative bialgebras" in a braided base category, were pointed out by Majid. He ob- 
served that if (B ,V,A)  is a bialgebra in a braided category (d ,v ) ,  then (B, Vr,  A) 
is not, as a role, again a bialgebra. Thus we can rarely expect a bialgebra to be a 

commutative algebra in the sense that V = Vv. Majid proposes to replace ordinary 
commutativity o f  a bialgebra B by a weaker condition, which has to be formulated 

with respect to a specified class o f  B-comodules. Thus a braided group in the sense 
o f  Majid is a bialgebra together with a class o f  comodules such that a compatibility 

condition is fulfilled for each of  these comodules. A class of  coalgebras that comes 

naturally equipped with a specified class o f  comodules consists o f  those obtained by 

reconstruction techniques from a category over ~4, that is, from a category cg and a 
functor co : ~ ~ .~. The coalgebra C :=  coend(co) reconstructed from (off, co) is the 

universal one such that co factors through the underlying functor j g c  ~ s t .  (We omit 

here the technical assumptions that make such a reconstruction possible.) In sloppier 
language, C is the universal coalgebra having all the co(X) as comodules. Now if 

is a braided monoidal category and c,) preserves the braiding, C is indeed a bialgebra, 

braided commutative with respect to the class {co(X)IX c c~} of  comodules. Note, 
however, that to speak about this "commutativity" property o f  C, we have to keep 
track of  the comodules co(X) we started with when constructing C. In some sense this 

contrasts with the "philosophy" o f  reconstruction theorems, which strive to translate 

properties o f  a category cg to properties of  a (co)algebra o f  which the objects of  

are (co)representations. 
In this paper we will show that bialgebras that are commutative algebras with respect 

to a braiding can still be a useful concept in the study of  braided groups, especially in 

the situation of  bialgebras reconstructed from categories over a base category ( d ,  r). 
We have seen that V = V r  is not a reasonable condition on the multiplication 

27 of  a bialgebra B in ~ .  However, if B is reconstructed from a braided category 
~, and a braided functor co : ~' ~ d ,  then we will find that 2 7 = 270 holds for a 

new flip isomorphism ~ : B ® B ---, B ® B, which is both a solution o f  the QYBE 
and a coalgebra map. In fact, a can be defined more generally, using the notion o f  

the center o f  a monoidal category. We give a short review of  the center construction 

in the preliminaries below; our references are Joyal and Street [1-3], and Kassel and 
Turaev [4]. The center ~ ( ~ )  is a braided category that can be constructed starting 

from any monoidal category 9 .  If  ~ is a braided category itself, then every ob- 

ject of  ~ is an object o f  ~ ( ~ )  in a standard way. Now assume C = coend(co) is 

a coalgebra reconstructed from a category (~,co) over (N , r ) .  Then, while C is an 
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object o f  ~ ( d )  in the standard way, it does not become in this way an object of  

~e(s~'-Coalg), the center o f  the category of  coalgebras in s t .  In Proposition 5 we will 
find, however, that C is also an object of  ~ e ( d )  in a new, natural but nonstandard 

way. This involves the definition of  an isomorphism ~ro,,x : C ® X ~ X ® C for each 
X E ~4. In Theorem 7 we will find that the new flip isomorphism has the property 

that ~r~o,z) is a coalgebra morphism whenever D is a coalgebra. In this way, the re- 
construction functor coend : ~ ---* sC-Coalg lifts to a braided functor coend~ : ~ --+ 

~e(sC-Coalg). The result mentioned above now reads: The bialyebra B reconstructed 

f r o m  a braided category cg and a braided func tor  o9 : c~ __~ d is a commutat ive 

alyebra in ~e(d-Coalg) .  

The referee pointed out why one should expect such a functor exists. The functor 

coend : ~ ~ d - C o a l g  has a right adjoint d e -  that maps a coalgebra to the cate- 

gory of  its comodules (we have omitted certain finiteness conditions we will discuss 

later). In case this fight adjoint is fully faithful, the functor coend induces a braided 
monoidal functor Lr(coend) : ~ ( E )  ~ ~e ( J -Coa lg ) ,  because in this case we have 
a natural isomorphism C -- coend(Jg  c )  for all coalgebras C (that means that the 

functor coend really "reconstructs" a coalgebra from its category of  corepresentations, 

an ideal case that is known to occur when .~¢ is the category of  vector spaces over 
a field). In this situation we can recover coend~ = 5e(coend)o d : ~ --~ ~ ( ~ )  
~e(se'-Coalg) where d : (g ~ ~ ' ( ~ )  is the imbedding functor associated with the 

braiding of  ft. 
Note that our commutativity result needs no reference to a collection o f  comodules 

for its statement. Instead the reconstruction has provided additional data on B. Al- 

though commutativity now takes the standard form V = Vtr again, this simplification 

is paid for, o f  course, with other subtleties: While B is a bialgebra with respect to the 

original braiding in sO, it is commutative with respect to a different braiding, namely 

that of  ~ ( d - C o a l g ) .  However, the notion of  a commutative algebra in the center o f  
the category of  coalgebras in ,~¢ might be a good definition for some kind of  braided 

affine semigroup within a braided base category. 
There is another construction in which the new flip isomorphism can be used while 

the old one does not work. If  B , H  are two bialgebras in (~ ' ,z) ,  then their tensor 
product algebra and tensor product coalgehra do not fulfill the compatibility condition 

for a bialgebra in (sO, z). However, if B and H are bialgebras in ~(~¢-Coalg) ,  they 

have a natural tensor product algebra B ® H in Lr(~4-Coalg), which is in particular a 

bialgebra in (sO, z). Note that the comultiplication o f  B ® H  is formed using the braiding 

z o f  d ,  while the multiplication uses the braiding of  the center. We can show that if, 

in this situation B and H are Hopf  algebras, then so is B ® H .  The antipode is SB~I  = 

~rtt,8(S, ® S~)z8,u and thus involves both the braiding of  ,~  and that o f  the center. 

1.1. Preliminaries 

Throughout the paper we will assume to be given a closed monoidal category d 
with braiding z. That is, ~ '  has a tensor product bifunctor ® which we assume to be 



244 M. Neuchl, P. Sehauenburg/Journal of Pure and Applied Algebra 124 (1998) 241~59 

strictly associative with unit object k, and z : X  ® Y --~ Y @ X  is a natural isomorphism 

satisfying zx®r,z = (zx, z ® Y ) ( X  @ vr, z )  and zx, r®z = (Y  ® zx, z)(vx,  r ® Z) ,  but not 
necessarily vr, xZx, r = idx, r. We will assume that ~ has colimits and @ preserves 

them in both arguments. We call an object X of  d rigid if it has a left dual, that 

is, if  there i s X *  in d and morphisms ev : X * ® X  ~ k, d b :  k ~ X ® X *  such 
that 

db@X X®ev 
X ~ X ® X * ® X  >X 

XZg X*@db X:  ~ X *  ev@X* ) X $  ® X  ® 

are the identity morphisms. Let ~¢'0 denote the full subcategory o f  rigid objects o f  d .  A 
category over d is a pair (cg, co), where ~' is a category and co : ~ ---, d 0  is a functor. 

We refer to [8] for the following sketch of  reconstruction theorems for bialgebras in 

,~?. There are at least two useful definitions o f  a category of  categories over d .  Both, 

ff;o and fi;, have objects the categories over s~¢. Morphisms f f  : (c~,co) ~ ( ~ , v )  in 

(20 are functors f f  : ~ ~ ~ with vo~ = co. A morphism [.fi, d] : (cg, co) _+ ( 9 ,  v) 

in E is an equivalence class of  pairs (~,~),  where f f  : c6 ~ ~ is a functor and 

d : co ---* v~- is an isomorphism. We will call such a pair a functor over .~¢. The 
relevant equivalence relation is defined by (o~,~) ~ (N, 0) iff there is ~b : ~-_z~c~ 
with v(~b) o d = 0. This equivalence relation makes sure that coend is a left adjoint 

functor, see [8, Theorem 2.1.12]. The right adjoint maps a coalgebra C to the category 

~ , c o  of  those C-comodules that are contained in s~/0 (equipped with the obvious 

underlying functor). The coendomorphism coalgebra C :=  coend(Cg, co) :=  coend(co) 

o f  a category (~,co) over s J  is a representing object for the fimctor s~/ ~ M 

Nat(co, co ® M )  E 5~et. Thus C, which always exists under the above assumptions on 

~ ' ,  satisfies Moro~(C,M) ~ Nat(co, co ® M )  for all M E ~ ' .  In more detail, there 

is a natural transformation ~o~ : co ___, co ® C such that 7 j~° defined by ~u~,(f) = 
(co ® f ) 6  ~'~ is bijective, that is, for each natural transformation ~b : co ~ co ® M 

there is a unique f : C ~ M with ~ = (co ® f ) 6 ~ .  The category t$ is a braided 

monoidal category, with (~ ,co)@ (N,v)  = ((g x 9 ,  c o n  v), where co @ v ( X , Y )  = 

co(X) ® v(Y) ,  and with the braiding [~ ,v ]  : (cg, co) ® ( ~ , v )  ~ ( ~ , v )  ® (c~,co), where 
~-- : (g x ~ --~ ~ x cg is transposition and ~ : co(X) @ v(Y)  --~ v (Y )  @ co(X) is the 

braiding in .~'. The functor coend preserves tensor products: we have coend(co @ v) 
coend(co) ® coend(v). The universal arrow is ~o®~ = (co @ ~ ® v ) ( ~  ® ~,.). Being 

a monoidal functor, coend maps algebras in (£ to algebras in ~¢-Coalg. Thus, if  cg 
is a monoidal category and (o), ~) is a monoidal functor, then C = coend(co) is a 

bialgebra. 
Furthermore, if  cg is rigid then C has an antipode. 
If  the braiding ~ is a symmetry then both, (s#-Coalg, ~) and (E, [~ ,  r]), are symmetric 

categories. In this case coend : (2 --~ ~uC-Coalg is a symmetric functor, that means 

compatible with the symmetries involved. 



M. Neuchl, P. SchauenburolJournal of Pure and Applied Algebra 124 (1998) 241-259 245 

The condition that d is closed means that the functors ~¢ ~ X ~ X ® Y E d have 
right adjoints horn(Y,-). Categories fulfilling all of  these conditions are, for example, 
the category t4og of left modules over a quasitriangular k-Hopf algebra and the category 
j/gH of right comodules over a coquasitriangular k-Hopf algebra which is k-flat. Note 
that here the underlying k-module of hom(Y,X), which was constructed in [9], is not 
in general Homk(Y,X). 

We will make constant use of the graphical calculus for doing computations in 
d .  References are Yetter et al. [11, 2]. [11, 3]. A morphism f : V1 ® . . .  @ Vm --~ 
Wl ® ..- ® Wn will be symbolized by 

if no 

Vl V~ 

W~ W. 

other graphical symbol is specified. Specifically we denote the braiding zx, r by 

X Y  
,'4, 

Y X  

its inverse by 

X Y 

V, 
Y X "  

We will denote the multiplication and unit morphisms V : A ®A ---, A,  t/: k ~ A of 
an algebra and the comultiplication and counit morphisms A • C ~ C ® C,  ~ : k ~ C 

of a coalgebra by 

A i and , 
A A A A  

respectively. The tensor product of  algebras A, B in d is A ® B with the multiplication 

defined by 

A B A B  Vq 
A B 
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The tensor product of coalgebras is defined in the same way. The opposite algebra A °p 
of A is A with the multiplication 

A A  

A 

A bialgebra is an algebra in the monoidal category of coalgebras, or, equivalently, an 
algebra and coalgebra whose multiplication and unit are coalgebra maps; i.e. 

B B B B 

B B B B 

and other equations involving r/ and ~ are required. We use 

V 

V C  

to denote a right C-comodule structure on V E ~¢. 
An antipode for the bialgebra B is a morphism S : B --* B satisfying 

B B B 

B B B 

The center :~f(~) of a monoidal category ~ is the category whose objects are pairs 
(V, av,-) with V E ~ and av, x " V ® X  ---+ X ® V a natural isomorphism, depicted as 

) ~ ,  such that 

~ ®Y V X ~  

X ® Y V  X Y V  

A morphism in ~ ( ~ )  is a morphism f : V ---+ W which satisfies 

VX VX 

X W  X W  
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~ ( @ )  is a braided monoidal category with (Y, av , - )®  (W, aw,-) = (V ® W, av®w-), 
where av®v<x is defined by 

V ® W X  V W X  

X V ® W  X V W  

and the components of  the braiding are the components of  a. 

2.  T h e  b r a i d e d  r e c o n s t r u c t i o n  f u n c t o r  

Our aim is to provide a reconstructed coalgebra C = coend(co) with a new isomor- 
phism C ® D --, D ® C of coalgebras, defined for any coalgebra D and satisfying the 
braid relations (the precise statement, Theorem 7, involves the center construction). 
Let us show first that such an isomorphism arises very naturally provided that D is 
also a reconstructed coalgebra, say D - coend(~ ,v ) .  Recall that the category I~ of  
all categories over sff is braided monoidal with tensor product (c~,co)®e ( ~ , v )  = 
(oK x ~ ,  co ® v) and braiding [~-, ~]. Put ~,o,~ := c o e n d ( [ J % ~ ,  z~o,~]) : C ® D --~ D ® C, 
where (C, Ac, ac) := coend(e)) and (D, AD,~D):= coend(v). Then 

syrn = c o e n d ( J , v ) :  coend o ®¢ ~ coend o ®~ 

is a natural morphism of  s~C-coalgebras. Since coend is a monoidal functor, we have 

L e m m a  1. Let (~ ,~ )  : (~g,e)) ~ (~ ' , co ' )  and ((~,O) : ( ~ , v )  --* ( ~ ' , v ' )  be func- 
tors over ~ ,  let C,C',D and D I be the corresponding coalyebras, and let f :=  
coend(~ ,{)  : C --* C' and g := coend(f#,tg) : D ~ D' the corresponding coalgebra 
morphisms, respectively. We have 

(i) (g® f )  o '~m#=~o,a. ,o( f  ®g)  
- ~ -1  c o e n d ( ~  4, -1 (ii) ~o,~ is a coalgebra isomorphism with r~,~,~. = , %,,,). 

(iii) I f  (~', 2) is another category over .~¢, we have: 

"L,,~.o~ = (1 ® ~,,).)(~,,~. ® 1), 

¥~,®~,)~ = (~o,,z Q 1)(1 ~-~,,~.). 

(1) 

(2) 

I f  we assume that the fight adjoint ~.~0 of coend is fully faithful, then Lemma 1 
proves a lot more: Since every coalgebra is then in a functorial way a reconstructed 
one (the counits of  the adjunction are isomorphisms coend(~C0 ) ~ C), we find that 
the category d - C o a l g  is braided. However, it is known that ~/~0 is not fully faithful 
even if d == j l H  for a nontrivial coquasitriangular Hopf  algebra H. In fact, Majid 's  
transmuted Hopf  algebra construction, used as an example in Section 5 below, shows 
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very explicitly that k ¢ JgH-Coalg does not satisfy k -~ coend(d/'~0). Still, we will be 
able to show that the isomorphism ~ can be generalized dropping the assumption that 

D is a reconstructed coalgebra D --- coend(v). 

As a first step we will characterize ~,v = ~ ,D without reference to v. 

Theorem 2. ?~o,v is the unique morphism z' that makes the follow&g diagram cam- 
mute: 

co(X)®D 

1 ~'® 1 

co(X)®C®D 

l®z' 
CO(X)®D®C " 

6~®1 , co(X)®C®D 

r2®l 

l®r 

co(X)®D@C 

ProoL By reconstruction theory, we know that ~ is the unique morphism that makes 

the outer rectangle o f  the following diagram commute: 

co(X)Qv(Y) 6®--®-~6co(X)®C®v(Y)®D l Q z ® l  . co(X)®v(Y)®CQD..,x 

(I) v(Y)®co(X)®DQC (II)}~®~ • 

v(Y)®co(X) 6®6 v(Y)®D®CO(X)®C I®z®l  * / . . v(y)®co(X)®D®C,. -/ 

(I) commutes since v is a braiding. Since 6 ~ ¢ Nat(co, co ® C) is not generally an 
epimorphism, (II) will not commute. But the two ways "first to the right then down" 

commute. These two ways can be easily, by using only the properties of  ® and v, 

transformed to: 

co(X)®v(y)l®6~ co(X)®v(Y)®D ~®l. v(Y)®co(X)®Dl®6~® ~ v(Y)®CO(X)®C® D 

1®6°'®1 [ 
v(Y)®co (X)® C ® D 1®1®~ . 

ll®l®f [®r2®l 
v(Y)@CO(X)@D®C , v(Y)@co(X)®O@C 
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Therefore ~ is the unique morphism for which this diagram commutes. So if we have 
r ~ as given in the theorem, we see that ~' = ~, since ~ is unique. If, on the other hand, 
we start with ~ we transform the last diagram to 

co(X)®v(Y)  z v (Y)®co(X)  a~®I, v (Y)@D@~o(X)  

l®.c_l l®f 
, v ( Y ) ® c g ( X ) ® D  ~ v ( Y ) ® ~ 9 ( X ) ® D ®  C 

l®g 

Here we abbreviated f : =  (,(2 ® 1)(1 @ z)(6 °' @ 1) and g := (1 ® "~)(6 °~ @ 1). Now 
the assertion follows by the universal property of  6 v, since co(X) is rigid. [] 

Now we have characterized ~ by a property which does not explicitly involve the 
functor v that D is reconstructed from, and we would like to make this property the 
defining property of a generalization of ~ to arbitrary coalgebras D (while C still has to 
be a reconstructed coalgebra). To do this, we have to generalize the universal property 
of C = coend(co), utilizing (for the first time) our general assumption that d is closed. 

Lemma 3. Let (cg, co)E ~ and C := coend(Cg, co). There is an isomorphism, natural 

in N, M Eo~q/, 

qJ~,~,N,M : Mor(C @ N,M) --* Nat(co @ N, co @ M )  

f ~--+ (1 @ f)(6~'  ® 1). 

ProoL Since ,~¢ is closed, there are natural isomorphisms for all X, Y c ~4o: 

Mor(X ® N, Y @ M) ------- Mot(Y* ® X ~ N,M)  TM Mor(Y* ® X, hom(N,M))  

Mor(X, Y ® horn(N, M))  

Since these isomorphisms are natural in all arguments, we have 

Nat(o9 ® N, o9 ® M)  ~ Nat(o, co ® hom(N, M))  

~- Mor( C, hom(N,M) ) -~ Mor(C @ N,M)  

Using Lemma 3, we see that the morphism ~' from Theorem 2 is well defined not 

only for coendomorphism coalgebras D, but for arbitrary objects V E d .  

Definition 4. Let (c~,c9) E E and C := coend(co). For any V C ~ ,  define a~,v : 
C ® V --* V ® C to be the unique morphism satisfying 

~ , v , v ® c ( ~ , v )  = (zv, o, ® C)(z~,v ® C)(co ® zc, v)(6 ~ ® V). 
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In a pictorial representation this definition can be expressed by 

X V X V 

X V C  X V C  

where ) ~  stands for ao~,v and X is any element o f  cg. (For shortness we write X 

instead of  og(X), though everything takes place in d . )  Note that this is indeed a 
generalization, since for any ( ~ ,  v) E ~ with D :-- coend(v), the morphism { .... from 
Theorem 2 agrees with tr~,D. 

The following proposition collects the coherence properties of  tr. Note that while the 
properties of  { listed above were perfectly straightforward consequences of  the braiding 
structure of  • and the fact that coend is a monoidal functor, we need entirely different 
techniques now, since the more general tr is not constructed as the image of  a braiding 
under a functor. 

Proposit ion 5. The mappin9 (~,~o) H (coend(o~),t7~.) defines a braided monoidal 

functor coend : • -~ ~ ( . ~ ) .  

Proof.  To show that (coend(co), ~r,~,_) is in the center o f  ~ '  we have to check that 
a~,v : C ® V ~ V ® C is a natural isomorphism and satisfies the coherence cond- 

itions 

a,~.~ = i d ,  (3) 

c%,v~w = (i Q o'~o,w)(c%,v ® 1). (4) 

The verifications are straightforward. We only show that a~o,v is invertible for all objects 
V c ~¢. To do this, we define a morphism e : C ® V ~ C ® V by tt'o),v,c®v(~) = 

~.--1 --1 (3 ~ ~ V) o ( v,c~ o zo~,v ). In the pictorial calculus that means 

X V 

X C V  X C V  
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'We claim that a is an isomorphism with a -1 = ~ o z .  Thus we have to prove @toz)oa = 

~Ldc®v and a o (a o z) = idv®o Lemma 3 shows us that it is sufficient to prove this 
equation after an application o f  Tc~,v,w®c. Let X E cg and V E ~ .  

X V X V 

X C V  

X V 

X C V  

X V 

X C V  

X V 

X C V  

] 
X C V  

-1 The second equation is equivalent to a o :~ = re® v. This can be verified similarly to 
the first equation. 

By now we know that (coend(co),cto_) lies in the center of  d .  To show that coend 

is a functor we have to check that o-~,(_), v is natural in its first argument, i.e. a~,v o 

( c o e n d ( ~ ) ®  1) = ( c o e n d ( ~ ) @  1)oa~o,v for all functors (~ ,~)  : (cg, co) ~ (~ ,v ) .  This 
can be verified easily using the definition of  coend(o~). 

It remains to show that coend is monoidal and braided. For the first we have to 

prove a counterpart to Eq. (2) for all (c~, ~o), ( 9 ,  v) E ~, namely 

a~®~,v = (a~o,v ® v)(¢o e a,,v). 

Let X E ~ and Y E 9 .  The first picture in the following diagram represents the left 

hand side o f  this equation: 

X 

X Y  V C  D 

Y V X Y V X Y V X Y V X Y V 

X Y V C  D X Y V C D  X Y V C  D X Y V C  D 

A 

That the functor coend is braided is obvious from the original definition o f  ~ as the 

image of  the braiding (J-, z) in ~ under coend. 

We have shown that the underlying object in d of  the coalgebra C = coend(co) is 
an object o f  ~ e ( d )  in a natural, but nonstandard way. Of  course any object of  d lies 
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in ~(~¢) since ~¢ is braided. The key advantage of the new structure ~o,- is that it 
is also compatible with the comultiplication A of C. 

Lemma 6. Let  (~,o~) E ~ with (C, Ac,  cc)  := coend(co) and V E ~ .  The morphism 

cr~o,v : C ® V ~ V @ C fulfills the followin9 two compatibility relations with the 
coalgebra structure morphism Ac: 

(1 ~ Ac)~o~,v = (cr(o,v Q C) (C  Q vc, v ) ( A c  Q V), (5) 

(1 Q dc)Cr~o,v = (Zc, 1 Q C) (C  Q ~(o,v)(Ac @ V). (6) 

Moreover, f o r  the morphism ec , we have tPeo,v,v( (1 ~ ~c )( ao~,v ) ) = z v,~ zo~,v , where tp 
is the isomorphism f r o m  L e m m a  3. 

In the graphical calculus, these two commutation relations are represented by 

C V C V C V 

~ (5) ~ (6) ~ .  = = 

V C C  V C C  V C C  

Proof. We start the computation with the following transformation: 

X V X V 

X V  C C  X V  C C  

X V 

X V C C  

From this point the proof for the two equations splits. 
To prove Eq. (5), we have to carry on our transformation in the following 

way: 

X V X V 

X V C C  X V C C  
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The second Eq. (6) results from 
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X V 

X V C C  

X V 

X V C C  

X V 

X V C C  

We omit the easy proof for the assertion on ec. 

Note that Lemma 6 shows that Ac is not a morphism in ~e (d ) ,  unless z-,~zo~,- = 

id~,_. Hence coend(og) is not in general an object in ~(~¢)-Coalg. Do not confuse 
this fact with the statement that coend(co) is an object in 5e(d-Coalg) ,  which we are 
going to prove now. 

Theorem 7. The mapping (~q, ~o) ~-~ (coend(eo), a~,-) defines a braided monoidal func- 

tor coend~ : ~ -* ~((d-Coalg) .  Moreover coendy is left adjoint to the functor 
;~e(d-Coalg) ~ (C,a) ~-~ ~ l  c, where ~#c is the category o f  all C-comodules for 

which the diagram o f  Theorem 2 with ~ replaced by a commutes for each coalge- 

bra D. 

Proofl All that is left to do to prove the first assertion is to show that for an arbitrary 

coalgebra (D, AD,~D) E d-Coa lg  the morphism a~, D : C @ D --~ D @ C is a coalge- 
bra morphism. To prove this claim we observe that, since tro~,D is natural in D, the 

morphism O'~o,D commutes with the coalgebra structure maps of D. 

( AD ~ C)~7oj,D ~--- tTco,D®D( C @ ZJD ), 

(E D @ C)O'¢o,D ~-- C @ E D. 

(7) 

(8) 

The following transformation yields the result: 

C D 

D C D C  

C D 

D C D C  

C D 

D C D C  

C D 

D C D C  
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The first equality is an application of Eq. (7), the second and third are applications of 
Eqs. (6) and (5), respectively. 

We omit the easy proof that a,o,D is also compatible with the counit ec ® ~D. The 
second claim is deduced easily from Theorem 2.1.12 in [8]. [] 

3. Commutative bialgebras 

It is well known that if (~, ®) is a monoidal category and co a monoidal functor, 
then C := coend(co) is a bialgebra, that is, an algebra in the category of coalgebras in 
~ .  Actually Theorem 7 allows one to show more: 

Theorem 8. Let  (~, ®, co) be a monoidal category over ~ .  Then C := coend~(co) is 

an algebra in ~e(d-Coalg). 

Proof. coendt ,  being a monoidal functor, maps monoidal categories over ~ ,  that is, 
algebras in ~, to algebras in ~%;((~¢-Coalg). [] 

Note that the theorem states that V : C ® C ~ C and q : k ~ C are morphisms in 
~e(.~C-Coalg), that is 

C C D  C C D  D D 

~ = ~  and ~ = l l  

D C  D C D C  D C  

for all coalgebras D. If (B, A, V) is a bialgebra in d ,  then (B, A, 27r), that is, B with the 
same coalgebra and opposite algebra structure is not in general a bialgebra. Thus there 
is no good notion of opposite bialgebra in ,~'. Assume, however, that B is an algebra in 
~(~4-Coalg). Then, since ~eG~g-Coalg ) is braided, there is a straightforward opposite 
algebra B °p in ~(~¢-Coalg), which, in particular, is a bialgebra. In more detail, the 
coalgebra structure of B op is the same as that of B, while the algebra structure is 

B°p B°p 

B°P 

A braided monoidal category (cg, ®, co) E (~ with a braided monoidal functor co : cg --~ 
d 0  is a commutative algebra in E. We know that coend~r is a braided monoidal 
functor between two braided monoidal categories, namely E and Lr(~'-Coalg). Since 
these types of functors preserve commutative algebras we have 
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Theorem 9. Le t  (~ ,  ®, co) be a braided monoidal category with a braided monoidal 

func tor  co : ~--+ ~ o .  Then coend~(co) is a commutat ive  algebra in ~e(~-Coalg) .  

In [6] Majid has introduced a commutativity condition for bialgebras, which depends 

on a class of  comodules: A bialgebra B in a braided category ~& is commutative with 
respect to a comodule (X, 3) E ~ , e  if  

X B X B 

X B X B 

Now suppose that B is a bialgebra whose underlying coalgebra is reconstructed from 
a category (~', co) over o~¢. Then the left hand side of  this equation is equal to (X ® 
27"g)(3 ® B), whenever X is in the image of  co. By Lemma 3, it follows that B is 
braided commutative in the sense of  Majid with respect to all the comodules in the 
image of  co, iff B is commutative in the sense that V = V~; in particular, this always 
holds if  B is the bialgebra reconstructed from a braided monoidal category cg and a 

braided functor co. 

4. Tensor product bialgebras 

Assume B and H are bialgebras in ~¢. Then we can form their tensor product algebra 
and tensor product coalgebra both called B ® H  with multiplication and comultiplication, 

defined by 

B H B H  B H 

VW and 
B H B H B H 

However  with this construction B ® H does not fulfill the compatibility condition 
for a bialgebra. The situation is no better if  we replace one of  the instances of  
z in the construction with z -1. Indeed if  (V~ @ Vs)(idA ® /~ @ i d s )  is a coalge- 
bra morphism for some /3 : A ® B - -  B ® A, then, since ~/A and r/s are coalgebra 
morphisms, /3 = (VA ® V~)(qA ® /3 ® ~/B) is necessarily a coalgebra morphism as 

well. 
We know that neither/3 = z nor, consequently, /3 = z -1 fulfills this condition unless 

ZB,H o ZH, S = idn®8. Although we have seen that there is no reasonable tensor product 
bialgebra B ® H defined for bialgebras in d ,  there is a perfectly natural notion of  
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tensor product bialgebra if  at least H is in the center o f  ~e/-Coalg. But note that for 
the same reasons as mentioned above, the morphism ~H,B, which completes H to an 
object o f  ~( ,~!-Coalg) ,  is not a bialgebra morphism. 

Theorem 10. Let B be a bialgebra in ~¢, and H an algebra in ~(.~¢-Coalg). Then 
B ® H is a bialgebra with comultiplication and multiplication defined by 

B H B H  B H  

# , a  and 
B H B H  B H 

I f  also B is an algebra in ~(~4-Coalg) ,  then this B ® H  is an algebra in ~((~¢-Coalg), 
namely the tensor product algebra of  B and H in ~(~¢-Coalg) .  

I f  cg and 9 are monoidal categories then cg × ~ is also monoidal. I f  eo : cg _+ ag 
and v : 9 -+ ag are monoidal functors, then so is o0 @ v. Note that (cg × 9 ,  co @ v) is 
the tensor product algebra of  (rg, ~o) and ( 9 ,  v) in ~. The functor coend~ preserves 
tensor products, and thus: 

Theorem 11. Let (cg,@,~o) and ( 9 , ® , v )  be monoidal categories over at. Then 
coend~(co @ v) TM coend~(co) @ coend~(v)  as algebras in ~(ag-Coa lg ) .  

Note that in a braided monoidal category (cg, z) the tensor product of  two commuta- 
tive algebras A and B is commutative, iff rs, A OZA,B = idA®s. So if co and v are braided 
functors ~o @ v will not be braided in general. 

I f  .~' and 9 are rigid categories, then by [lO] both coend(co) and coend(v) are Hopf  
algebras, and since ~ × 9 is also rigid, coend(~o @ v) is also a Hopf  algebra. Thus the 
result o f  the following theorem is not a surprise. It shows however, that the notion of  
an algebra in ~ ( ~ - C o a l g )  works well. 

Theorem 12. Let C,D be Hopf algebras in d ,  with (D, a) an algebra in ~e(ag-Coalg). 

Then C ® D is a Hopf algebra with antipode 

Sc®~ = ,~v,C(&~ ® Sc)tc,> 

We can represent Sc®D in the pictorial calculus by 

C D 

Sc® D = ~ "  

C D 
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Proof. We have to show V(1 ®Sc®D)A = q~ and V(Sc®o ® 1)A = r/e. We show the 
first equation, the second can be proved with similar reasoning. 

C D 

C D 

C D 

C D 

C D 

II 
C D 

C D 

) 

T 
C D 

C D 

C D 

To get the first equality we apply naturality of r to AD, and note that VD is a morphism 
in ~ (~ ' -Coa lg ) .  The second equality is the antipode property of  So. The third step 
holds since ~ is functorial (with respect to eD) and t/D is a morphism in ~(~¢-Coalg).  
The last step is the antipode property of  Sc. [] 

5. The transmuted Hopf algebra 

In this section let k be a field and A be a k-Hopf algebra. Let (. I ") : A ® A --~ k 
be a convolution invertible morphism such that (A, (. I.}) is a coquasitriangular (or 
braided) Hopf algebra in the sense of [8] or [5]. It is well known that the category 
(~¢/A, ®,k ,% I.)) of  A-comodules is braided and monoidal. For any two A comodules 
X, Y E d¢ 'A, the braiding ~(. I ) : X ® Y ~ Y ® X is defined by 

X Q Y ~ x ® y ~-~ ~ Y(o) ®X(o)(X(1)IY(I)) C Y ®X. 

Since the forgetful functor j /A ~ k-Vec creates colimits, d/n is cocomplete and ® 
preserves arbitrary colimits in both variables. Thus all requirements for Tannaka du- 
ality are fulfilled. Let ~#fA be the full subcategory of finite dimensional A-comodules. 
Then jgfn, together with the forgetful functor ys • J t~  ~ jIA can be regarded 
as a category over jgx.  j//fA is monoidal, braided and rigid, hence coend(~ )  is a 
Hopf algebra in ~,A. We express this by saying coend(~¢ r )  is an A-comodule Hopf 

algebra. 
To apply Theorem 7, we need to know that our base category Jr/n is closed. 

The construction of an inner Horn functor for -X[ A is due to Ulbrich [9]. It is easy 
to check that for any M,N E ~.#A the set Hom~(M,N) is a left A* module with 

(h*" f ) ( m )  --= ~"~f(m(o))(o)h*(f(m(o))(l)S(mo))) for all h* C A*, m E M and 
f E Hom~(M, N). We define h om(M,N) to be the unique maximal rational submodule 
and 6 : hom(M,N) ~ hom(M,N)® H the corresponding comodule structure map. We 
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assert that (hom(M,N) ,  6) defines an inner Hom-functor. To prove this assertion, we 
only have to show that 

q : hom(M,N)  ~ M ---~ N and ~ : N ---~ hom(M,N  ® N )  

f ® x  H f ( x )  y ~ (x ~ y ® x )  

are A-comodule maps. This is easily done by direct calculations. 
Let us review Majid's  transmuted Hopf  algebra construction, stated in [6]. Let ~U : 

J/g~ --~ Jk 'A be the forgetful functor and define (H, AH, CH, #,q, r/n, 2) :=  c o e n d ( f )  as 
A-comodule Hopf  algebra. We have then the following theorem: 

Theorem 13. As an A-comodule coalgebra H is isomorphic to (A, A~,~A; 6ad), where 

6 ad :A- - -+AQA 

h H ~ h ( 2 )  ® S(ho))h(3 ). 

Let  a, b E H. The multiplication #H : H ® H ~ H is given by 

#(a @ b) = ~ a(2)b(3)(a(3) [ S(b(1)))(a(1) [ b(2)) 

The antipode 2 : H --~ H is given by 

2(a) = ~'. S(a(2))(S2(a(3))S(a(l))[a(4)). 

For all (X, fax) E J(~ the H-comodule-structure 6~ : ~ ' ( X )  ~ U ( X ) ® H  agrees with 
(~x : X --+ X ® A (in particular, this map is A-colinear). 

The functor g/" • .//g~ ~ ~[t ~ is braided. Therefore (coendCV~), a~o,-) is a commutative 
algebra in ~e(A-Coalg), where a~o,- is the natural isomorphism introduced in Proposition 
5. Now we give a formula for a and derive the explicit form of  the commutativity 

relation p = # o ~r. 

Theorem 14. Let  V be any A-comodule. The morphism a~o,v f rom Proposition 5 reads 

a~,v : H ~  V ~ V ® H ,  

a(a @ v) = ~ v(o) ® a(2)(v(1) l a(a))(a(3) [ v(2)). 

With this isomorphism, the eoendomorphism Hop f  algebra H obeys the following 

commutativity relation: 

p = p o a ~  : H @ H - *  H, 

#(a ® b) = ~ #(b(3) @ a(2))(S(b(2))b(4)la(1)) (a(3) lS(bo))b(5)). 

Proof .  The second claim follows from the first. 
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The morphism ~r~o,v is defined by: (1 ® a~,v)(6 ~'~ @ 1) = (~2 @ 1)(1 ® r)(6 °) @ 1). 
N o w  we apply the right side o f  this equation to x ® v E X ® V. 

(T 2 @ 1)O (1 ® "C) O (fiX ® ])(X @ 12) : (T 2 @ 1) O ( E X ( 0 )  @ Z'(X(I) @ D)) 

_-- (z2 ® 1)(~-]~ x(o) ® V(o) @x(z){S(x(1))x(s)lv(l)} 

= (z  ~ 1 ) ( ~  v(o) ®x<o)(x<l)lV(l)} ®x(s)(S(x(2))x(4)lv(2)} 

= Ex(0)  ® v(o)(v(l)Ix(1)}(x(2) I v(@ ®x(4)(S(x(3))g(5)lv(3)) 

= Ex(o)  ® v(o) ® x(4){v(1)Ix(l)) (x(2)S(x(s))x(s)lv(@ 
= E x ( o ) ®  v(o)® x(2)(v(~))I x(1)){x(3) I ~(2)). 

This proves the required equality, if  we take into account that for any h C A we can 
find a finite dimensional subcomodule o f  A containing h. Now, if we specialize X to 
be this particular comodule, an application of  e ® 1 @ 1 yields the equation. [] 
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